People, Interacting with Information
Nicholas J. Belkin
Rutgers, The State University of New Jersey
New Brunswick, NJ, USA
Title: Towards a Game-Theoretic Framework for Information Retrieval
Speaker: ChengXiang Zhai
The task of information retrieval (IR) has traditionally been defined as to rank a collection of documents in response to a query. While this definition has enabled most research progress in IR so far, it does not model accurately the actual retrieval task in a real IR application, where users tend to be engaged in an interactive process with multiple queries, and optimizing the overall performance of an IR system on an entire search session is far more important than its performance on an individual query.
In this talk, I will present a new game-theoretic formulation of the IR problem where the key idea is to model information retrieval as a process of a search engine and a user playing a cooperative game, with a shared goal of satisfying the user's information need (or more generally helping the user to complete a task) while minimizing the user's effort and the resource overhead on the retrieval system. Such a game-theoretic framework offers several benefits. First, it naturally suggests optimization of the overall utility of an interactive retrieval system over a whole search session, thus breaking the limitation of the traditional formulation that optimizes ranking of documents for a single query. Second, it models the interactions between users and a search engine, and thus can optimize the collaboration of a search engine and its users, maximizing the "combined intelligence" of a system and users. Finally, it can serve as a unified framework for optimizing both interactive information retrieval and active relevance judgment acquisition through crowdsourcing. I will discuss how this new framework can not only cover several emerging directions in current IR research as special cases, but also open up many interesting new research directions in IR.
ChengXiang Zhai is a Professor of Computer Science and Willett Faculty Scholar at the University of Illinois at Urbana-Champaign, where he is also affiliated with the Graduate School of Library and Information Science, Institute for Genomic Biology, and Department of Statistics. He received a Ph.D. in Computer Science from Nanjing University in 1990, and a Ph.D. in Language and Information Technologies from Carnegie Mellon University in 2002. He worked at Clairvoyance Corp. as a Research Scientist and a Senior Research Scientist from 1997 to 2000. His research interests include information retrieval, text mining, natural language processing, machine learning, biomedical and health informatics, and intelligent education information systems. He has published over 200 research papers in major conferences and journals. He is an Associate Editor for Information Processing and Management and previously served as an Associate Editor of ACM Transactions on Information Systems, and on the editorial board of Information Retrieval Journal. He is a conference program co-chair of ACM CIKM 2004, NAACL HLT 2007, ACM SIGIR 2009, ECIR 2014, ICTIR 2015, and WWW 2015, and conference general co-chair for ACM CIKM 2016. He is an ACM Distinguished Scientist and a recipient of multiple awards, including the ACM SIGIR 2004 Best Paper Award, the ACM SIGIR 2014 Test of Time Paper Award, Alfred P. Sloan Research Fellowship, IBM Faculty Award, HP Innovation Research Program Award, Microsoft Beyond Search Research Award, and the Presidential Early Career Award for Scientists and Engineers (PECASE).